What is Head Detection? Head detection is the process of identifying and locating human heads in images or videos.
Papers and Code
Sep 19, 2025
Abstract:Camera-radar fusion offers a robust and low-cost alternative to Camera-lidar fusion for the 3D object detection task in real-time under adverse weather and lighting conditions. However, currently, in the literature, it is possible to find few works focusing on this modality and, most importantly, developing new architectures to explore the advantages of the radar point cloud, such as accurate distance estimation and speed information. Therefore, this work presents a novel and efficient 3D object detection algorithm using cameras and radars in the bird's-eye-view (BEV). Our algorithm exploits the advantages of radar before fusing the features into a detection head. A new backbone is introduced, which maps the radar pillar features into an embedded dimension. A self-attention mechanism allows the backbone to model the dependencies between the radar points. We are using a simplified convolutional layer to replace the FPN-based convolutional layers used in the PointPillars-based architectures with the main goal of reducing inference time. Our results show that with this modification, our approach achieves the new state-of-the-art in the 3D object detection problem, reaching 58.2 of the NDS metric for the use of ResNet-50, while also setting a new benchmark for inference time on the nuScenes dataset for the same category.
Via

Sep 19, 2025
Abstract:Language-conditioned robotic manipulation in open-world settings requires not only accurate task execution but also the ability to detect failures for robust deployment in real-world environments. Although recent advances in vision-language models (VLMs) have significantly improved the spatial reasoning and task-planning capabilities of robots, they remain limited in their ability to recognize their own failures. In particular, a critical yet underexplored challenge lies in detecting semantic misalignment errors, where the robot executes a task that is semantically meaningful but inconsistent with the given instruction. To address this, we propose a method for building datasets targeting Semantic Misalignment Failures detection, from existing language-conditioned manipulation datasets. We also present I-FailSense, an open-source VLM framework with grounded arbitration designed specifically for failure detection. Our approach relies on post-training a base VLM, followed by training lightweight classification heads, called FS blocks, attached to different internal layers of the VLM and whose predictions are aggregated using an ensembling mechanism. Experiments show that I-FailSense outperforms state-of-the-art VLMs, both comparable in size and larger, in detecting semantic misalignment errors. Notably, despite being trained only on semantic misalignment detection, I-FailSense generalizes to broader robotic failure categories and effectively transfers to other simulation environments and real-world with zero-shot or minimal post-training. The datasets and models are publicly released on HuggingFace (Webpage: https://clemgris.github.io/I-FailSense/).
Via

Sep 17, 2025
Abstract:Long-horizon robotic manipulation tasks require executing multiple interdependent subtasks in strict sequence, where errors in detecting subtask completion can cascade into downstream failures. Existing Vision-Language-Action (VLA) models such as $\pi_0$ excel at continuous low-level control but lack an internal signal for identifying when a subtask has finished, making them brittle in sequential settings. We propose SeqVLA, a completion-aware extension of $\pi_0$ that augments the base architecture with a lightweight detection head perceiving whether the current subtask is complete. This dual-head design enables SeqVLA not only to generate manipulation actions but also to autonomously trigger transitions between subtasks. We investigate four finetuning strategies that vary in how the action and detection heads are optimized (joint vs. sequential finetuning) and how pretrained knowledge is preserved (full finetuning vs. frozen backbone). Experiments are performed on two multi-stage tasks: salad packing with seven distinct subtasks and candy packing with four distinct subtasks. Results show that SeqVLA significantly outperforms the baseline $\pi_0$ and other strong baselines in overall success rate. In particular, joint finetuning with an unfrozen backbone yields the most decisive and statistically reliable completion predictions, eliminating sequence-related failures and enabling robust long-horizon execution. Our results highlight the importance of coupling action generation with subtask-aware detection for scalable sequential manipulation.
* 8 pages, 9 figures, 1 table
Via

Sep 18, 2025
Abstract:Foundation models such as CLIP have demonstrated exceptional zero- and few-shot transfer capabilities across diverse vision tasks. However, when fine-tuned for highly specialized biometric tasks, face recognition (FR), morphing attack detection (MAD), and presentation attack detection (PAD), these models may suffer from over-specialization. Thus, they may lose one of their foundational strengths, cross-domain generalization. In this work, we systematically quantify these trade-offs by evaluating three instances of CLIP fine-tuned for FR, MAD, and PAD. We evaluate each adapted model as well as the original CLIP baseline on 14 general vision datasets under zero-shot and linear-probe protocols, alongside common FR, MAD, and PAD benchmarks. Our results indicate that fine-tuned models suffer from over-specialization, especially when fine-tuned for complex tasks of FR. Also, our results pointed out that task complexity and classification head design, multi-class (FR) vs. binary (MAD and PAD), correlate with the degree of catastrophic forgetting. The FRoundation model with the ViT-L backbone outperforms other approaches on the large-scale FR benchmark IJB-C, achieving an improvement of up to 58.52%. However, it experiences a substantial performance drop on ImageNetV2, reaching only 51.63% compared to 69.84% achieved by the baseline CLIP model. Moreover, the larger CLIP architecture consistently preserves more of the model's original generalization ability than the smaller variant, indicating that increased model capacity may help mitigate over-specialization.
* Accepted at the IEEE International Joint Conference on Biometrics
2025 (IJCB 2025)
Via

Sep 16, 2025
Abstract:Detecting anomalies in time series data is essential for the reliable operation of many real-world systems. Recently, time series foundation models (TSFMs) have emerged as a powerful tool for anomaly detection. However, existing methods typically rely on the final layer's representations of TSFMs, computing the anomaly score as a reconstruction or forecasting error via a task-specific head. Instead, we propose TimeRep, a novel anomaly detection approach that leverages the intermediate layer's representations of TSFMs, computing the anomaly score as the distance between these representations. Given a pre-trained TSFM, TimeRep selects the intermediate layer and patch-token position that yield the most informative representation. TimeRep forms a reference collection of intermediate representations from the training data and applies a core-set strategy to reduce its size while maintaining distributional coverage. During inference, TimeRep computes the anomaly score for incoming data by measuring the distance between its intermediate representations and those of the collection. To address concept drift, TimeRep integrates an adaptation mechanism that, at inference time, augments the collection exclusively with non-redundant intermediate representations from incoming data. We conducted extensive experiments on the UCR Anomaly Archive, which contains 250 univariate time series. TimeRep consistently outperforms a broad spectrum of state-of-the-art baselines, including non-DL, DL, and foundation model-based methods.
* 10 pages,8 figures
Via

Sep 16, 2025
Abstract:The volume of machine-generated content online has grown dramatically due to the widespread use of Large Language Models (LLMs), leading to new challenges for content moderation systems. Conventional content moderation classifiers, which are usually trained on text produced by humans, suffer from misclassifications due to LLM-generated text deviating from their training data and adversarial attacks that aim to avoid detection. Present-day defence tactics are reactive rather than proactive, since they rely on adversarial training or external detection models to identify attacks. In this work, we aim to identify the vulnerable components of toxicity classifiers that contribute to misclassification, proposing a novel strategy based on mechanistic interpretability techniques. Our study focuses on fine-tuned BERT and RoBERTa classifiers, testing on diverse datasets spanning a variety of minority groups. We use adversarial attacking techniques to identify vulnerable circuits. Finally, we suppress these vulnerable circuits, improving performance against adversarial attacks. We also provide demographic-level insights into these vulnerable circuits, exposing fairness and robustness gaps in model training. We find that models have distinct heads that are either crucial for performance or vulnerable to attack and suppressing the vulnerable heads improves performance on adversarial input. We also find that different heads are responsible for vulnerability across different demographic groups, which can inform more inclusive development of toxicity detection models.
Via

Sep 10, 2025
Abstract:This paper introduces a novel method for end-to-end crowd detection that leverages object density information to enhance existing transformer-based detectors. We present CrowdQuery (CQ), whose core component is our CQ module that predicts and subsequently embeds an object density map. The embedded density information is then systematically integrated into the decoder. Existing density map definitions typically depend on head positions or object-based spatial statistics. Our method extends these definitions to include individual bounding box dimensions. By incorporating density information into object queries, our method utilizes density-guided queries to improve detection in crowded scenes. CQ is universally applicable to both 2D and 3D detection without requiring additional data. Consequently, we are the first to design a method that effectively bridges 2D and 3D detection in crowded environments. We demonstrate the integration of CQ into both a general 2D and 3D transformer-based object detector, introducing the architectures CQ2D and CQ3D. CQ is not limited to the specific transformer models we selected. Experiments on the STCrowd dataset for both 2D and 3D domains show significant performance improvements compared to the base models, outperforming most state-of-the-art methods. When integrated into a state-of-the-art crowd detector, CQ can further improve performance on the challenging CrowdHuman dataset, demonstrating its generalizability. The code is released at https://github.com/mdaehl/CrowdQuery.
* 8 pages, 5 figures, accepted by IROS 2025
Via

Sep 05, 2025
Abstract:Recent advances in semantic segmentation of multi-modal remote sensing images have significantly improved the accuracy of tree cover mapping, supporting applications in urban planning, forest monitoring, and ecological assessment. Integrating data from multiple modalities-such as optical imagery, light detection and ranging (LiDAR), and synthetic aperture radar (SAR)-has shown superior performance over single-modality methods. However, these data are often acquired days or even months apart, during which various changes may occur, such as vegetation disturbances (e.g., logging, and wildfires) and variations in imaging quality. Such temporal misalignments introduce cross-modal uncertainty, especially in high-resolution imagery, which can severely degrade segmentation accuracy. To address this challenge, we propose MURTreeFormer, a novel multi-modal segmentation framework that mitigates and leverages aleatoric uncertainty for robust tree cover mapping. MURTreeFormer treats one modality as primary and others as auxiliary, explicitly modeling patch-level uncertainty in the auxiliary modalities via a probabilistic latent representation. Uncertain patches are identified and reconstructed from the primary modality's distribution through a VAE-based resampling mechanism, producing enhanced auxiliary features for fusion. In the decoder, a gradient magnitude attention (GMA) module and a lightweight refinement head (RH) are further integrated to guide attention toward tree-like structures and to preserve fine-grained spatial details. Extensive experiments on multi-modal datasets from Shanghai and Zurich demonstrate that MURTreeFormer significantly improves segmentation performance and effectively reduces the impact of temporally induced aleatoric uncertainty.
Via

Sep 04, 2025
Abstract:This paper introduces an unobtrusive in-situ measurement method to detect user behavior changes during arbitrary exposures in XR systems. Here, such behavior changes are typically associated with the Proteus effect or bodily affordances elicited by different avatars that the users embody in XR. We present a biometric user model based on deep metric similarity learning, which uses high-dimensional embeddings as reference vectors to identify behavior changes of individual users. We evaluate our model against two alternative approaches: a (non-learned) motion analysis based on central tendencies of movement patterns and subjective post-exposure embodiment questionnaires frequently used in various XR exposures. In a within-subject study, participants performed a fruit collection task while embodying avatars of different body heights (short, actual-height, and tall). Subjective assessments confirmed the effective manipulation of perceived body schema, while the (non-learned) objective analyses of head and hand movements revealed significant differences across conditions. Our similarity learning model trained on the motion data successfully identified the elicited behavior change for various query and reference data pairings of the avatar conditions. The approach has several advantages in comparison to existing methods: 1) In-situ measurement without additional user input, 2) generalizable and scalable motion analysis for various use cases, 3) user-specific analysis on the individual level, and 4) with a trained model, users can be added and evaluated in real time to study how avatar changes affect behavior.
Via

Aug 25, 2025
Abstract:Autonomous planetary exploration missions are critically dependent on real-time, accurate environmental perception for navigation and hazard avoidance. However, deploying deep learning models on the resource-constrained computational hardware of planetary exploration platforms remains a significant challenge. This paper introduces the Adaptive Quantized Planetary Crater Detection System (AQ-PCDSys), a novel framework specifically engineered for real-time, onboard deployment in the computationally constrained environments of space exploration missions. AQ-PCDSys synergistically integrates a Quantized Neural Network (QNN) architecture, trained using Quantization-Aware Training (QAT), with an Adaptive Multi-Sensor Fusion (AMF) module. The QNN architecture significantly optimizes model size and inference latency suitable for real-time onboard deployment in space exploration missions, while preserving high accuracy. The AMF module intelligently fuses data from Optical Imagery (OI) and Digital Elevation Models (DEMs) at the feature level, utilizing an Adaptive Weighting Mechanism (AWM) to dynamically prioritize the most relevant and reliable sensor modality based on planetary ambient conditions. This approach enhances detection robustness across diverse planetary landscapes. Paired with Multi-Scale Detection Heads specifically designed for robust and efficient detection of craters across a wide range of sizes, AQ-PCDSys provides a computationally efficient, reliable and accurate solution for planetary crater detection, a critical capability for enabling the next generation of autonomous planetary landing, navigation, and scientific exploration.
* 17 pages, 6 figures. A research paper on a novel deep learning
framework for planetary crater detection
Via
